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Abstract
This paper extends certain results of Iglehart and Whitt on multiple channel
queues to the case where the inter-arrival times and service times are not necessarily
identically distributed. It is shown that the weak convergence results in this case are
exactly the same as those obtained by Iglehart and Whitt.

Introduction

The queuing systems considered here are the same as been introduced by Borovkov (1965) and used in [4] and
those which have been considered by Iglehart and Whitt [5] as an analytical tool.
[4] and [5], that is, they consist of r independent arrival Fairly extensive heavy traffic limit theorems for
channels and s independent service channels, whereas multiple channel queues have been obtained in [4] and
usually the arrival and service channels are independent. [5]. We assume that the reader is familiar with these
Arriving customers form a single queue and are served in works. In [4] it was assumed that r+s basic sequences of
the order of their arrival without defections. As in [4] and inter-arrival times and potential service times were
[5] we investigate two different models; the standard independent sequences of non-negative, independent and
system and the modified system. The two models differ identically distributed random variables with finite
in their modes of operation for the service channels. In variance. In this present paper we relax the assumption
the standard system a waiting customer is assigned to the that inter-arrival times and service times are identically

first available service channel and the servers

. ) distributed, i.e., we assume that r+s basic sequences of
(servers=service channels) are shut off when they are idle.

inter-arrival times and service times are independent

Thus, the classical GI/G/s system is a special case of sequences of non-negative are independent random

this system. In the modified system a waiting customer variables. We show that the weak convergence results in

is assigned to the service channel that can complete his this case are exactly the same as those obtained in [4]
service first and the servers are not shut off when they and [5].

are idle. For more details, see [4] and [5). The modified

system is of some interest in its own right and it has Preliminaries

The terminology and notations used throughout this
paper are the same as in [4] and (5] and Billingsley

Keywords: Weak convergence; Heavy traffic; Multiple channel (1968). We will also use notations from [2]
queue Conditions A:
Work carried out when the author was on sabbatical leave at @ For each n>1, let X "m, m=12, ..,k be

Manchester University mutually independent random variables defined on
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a probability spacc (Q2,B.P ).
i)

kn
2
X%=o,varX"= o’ B2= Yol Blk,——c21

ms=i

LA oi,k-ll <1tk

as n —> oo and max
I<ksk,

kn
I
prpY ]
Bn m={ “xl>cB_}
r all e>0,
bere ., , (x) = P{X &, <x]. (Lindeberg condition).

ii) xzan'm(x) —0, as n 3 oo

LetX *(¢), £ €[0,1], be the random function dcfined in
D[0,1]by

XM =St /B, 0sisl, o

where S} =X 7 + ... + X}, Isksk,, S;=0.

Now, we state the following results without proof which
we will use in the sequel.

Lemma 1. If the double sequence {X:, } , n2l,

m=1, ... k,, ofr.v.'ssatisfies condition A, then
max X" P
1_<k$kn l k I/Bn —)0,

([ 1] , Lemma 2.2)

Throughout the paper Wiener processes will be denoted
by & with and without subscripts or superscripts.
Theorem 1. ([ 1] , Theorem 2.2) If the double sequence

‘an} n2l, m=1, ..., k, of r.v.'s satisfies condition

A, then X” =& in D[0,1], where X" is defined by (1).
It is clear that this theorem is an extension of theorem
16.1 of Billingsley (1968).
Condition B:

(i) For each fixed n>1,
{u;} and {":.1} m =12, ... k,,betwo independent
triangular sequences of independent non-negative random
variables defined on some probability space (Q2,8,P).
Thus for each n21, X, = v ,-u,, are independent for

'm-1

let

m=l ..k,
() Eup=A; —— A7 Evi=pl—
asn —— oo

nd Exf =y =p! Al yasnowm=1,.. K,
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kl
(i) Var (1) = Gom(T), Y, Gm(l) —> &’ (1),
- m=1
and
max |G (M) - O (T) |<13, 0<G(T) <o,
I<msk,

where T stands for u or v.
(iv)  The distribution of the random variables

v, andX , satisfy the Lindeberg condition, that is,

Kn

‘ 0-1")? dG, ) —C

Kl

1

3
6%k, m=I {Lﬂ>6‘\/7<—..’

«- ) *dF, . (%) >0,asn >

for every € > 0, where F,_ and G, , are distribution
functions of the random variables X and v;
respectively and

2 2 2
=0 (V) + G (u).
For a double sequence {u,’;’, n2l, m=1, ... k,, of non-
negative random variables we define a sequence of

counting renewal process { A" (1), 120} for each n>1, as
follows

max{kzi;zk

n n
m=l umSt}, u,st
0,

A= n
uy>t.
Let Y (1), 0,st<1, the random function induced by
partial sums, be defined in D[O,l] by

S[k,"]- [knt] A«,,

Yo = , 0<i<1,

o(u)kl?

Where Sy =uj+ ... +uy, ISk<k, andS "’ =0.

If random variables u,, ’s satisfy condition B, then
theorem 1 implies that ¥ ;= ¢ in D[0,1]. 3)
Define Z” in D[0,1] by
A"k, 1) - (k) 12

-, 1-3/2 \/E

where A "(1) is given in (2).
Now, if we proceed as theorem 17.3 of Billingsley
(1968) by using Lemma 1 when r.v.'s satisfy condition

Z)=

’ st=1,
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B, we have;

Theorem 2.Z" =¢ in D[0,1], where Z” is given
in (3).

It is obvious that this theorem is an extension of
theorem (17.3) of Billingsley (1968) and theorem 1 of
Kyprianou (1971).

The Main results on Multiple Channel Queues in
Heavy Traffic

(i) We adopt the same notations as those of Igelhart and
Whitt's [4]. Assume that customers arrive one at a time in
each of r channels and then immediately join a single
queue in front of the s servers. So, we have as basic data
r+ s independent sequences of non-negative and
independent, but not identically distributed, random
variables with finite mean and variance;

‘u; nZ]} (i=12, ... r) and {v’,l nzl} (=12, ...)
all defined on a common probability space (2,F.P). The
variable u‘;, represents the inter-arrival time between the
(n-1) th and nth customers in the itk arrival channel and
the variable v represents the nth potential service time
of the jth server. We assume that the system is initially
empty, although our limit theorem does not depend on
this condition.

As in the previous part, we now define counting
renewal processes associated with each channel as
follows :

L i i i
Al = max‘kzl.u1+u2+...+u,‘St|,u,Sl
0, uy >t

for all 120, 1<i<r, and,
. [T i el Lig
i) = max (k21: v + vy oty S v St
, vi>1,

for all1 20, 1<j<s.

It is clear that these processcs represent the total
number of arrivals or the total number of potential
service times in the appropriate channcl in the time
interval (0,1).

Considering the service discipline in the modified
system, il is very casy to express the qucuc length
process, @ (1), in terms of these basic renewal processes.
Throughout this paper all queue iength processes count
the customers being served as well as those waiting and
there is no upper bound on the number of waiting
customers.
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For each o e and (20, we have

Q’'(t) = X(1) -inf {X(s), 0ss<t},

where A=Al () + A% )+ +AT (1),
S(t) = St S 2 ()+..+ S°(1),
and X(1) = A(t) - S(1).

We assume that
A, =—L, u,;_l._, A=37, A, u=Xiuand
Eu/| Ev),
p =M. Furthermore, we let
af: lfoz[u',], o'f:yfoz[v’,], and
¥y’ =X - °'§+Z ;::03
Now letAL(i=12,...7), 84 =1,2,....5), X ,and Q,,
be random function in D[0,1] defined by
Als [Aftnt) - A nitfion™,
§= [Sj(nl) - u,-nt]/o;n“z,
X, =[X(0) - (A-p) nt] rvn™?,

Q.= (0 () - (A-w) nir¥n 2, 01,

In this paper we will omit the proofs of those results
which are based on the Iglehart and Whitt original oncs
[4]. In fact they are applicable in this case, of course,
after necessary modifications. As we have mentioncd in
the previous part, & is a Wiener process, and random
variables satisfy condition B.

Lemma 2. X, =&
The proof follows from lemma 2.1 of [4] by using
theorems 1 and 2.

Now, let us introduce the continuous mapping
f : D—— D which corrcsponds o an impenctrable
barricr at the origin. For x € D, f is dcfined by

fix)= x(t) - inf  x(s), 01<]l and xe D.
Oss<t
The Standard Queueing System
In the standard multiple channel qucucing system, as
we have indicated in the introduction, customers arc
served in the order of their arrival by the first idlc server.
The main idea, duc 0 Borovkov ([3], scction 5), is to
define the standard systcm in terms of the same basic
sequences of random variables alrcady used for the
modified system, and then show that the two qucuc

(i)

length processes differ very little in heavy traffic. In
other words, we show that the two corresponding




Vol.3 No34d
Summer & Autumn 1992

sequences of random functions in D[0,1] converge 1o the
same limit.

In order to investigate the standard system, we must
generate the actual service times from the given
sequences of potential service times. We follow the same
procedure as Igelhart and Whitt's {4]. For each server we
consider the actual service times to be a subsequence of
the potential service times. If there is still a demand for
service after a server has just served a customer, then let
the next actual service time be the next random variable
in the basic sequence of potential service times. If there
has been no demand before receiving a customer at time
t, let the next actual service time be the first unused
random variable occurring after time t in the basic
sequence of potential service times. In other words, the
index of potential service time which is to be the actual
service time of the next customer is 1 + max [k, 8! },
where k is the index of the potential service time which
was the last actual service time. It is obvious that this
procedure provides a subsequence of independent random
variables.

We now let Qft), the queue length in the standard
multiple channel queucing system, be the number of
customers either waiting or being served at time t.
Define the corresponding random function in D by

0,=[0m) - (A-w) ndivn ™,

The main result is:

Lemma 3.If P=1, then

0, = fE); it P>1, then Q, = £,

Proof: We proceed as theorem 3.1 of 4], using lemma 1
instcad of lemma 3.3 of {4}, this lcads to the result.

(iii) The Departure Process

We denote the departure processes for the standard and
modificd queucing systems by {D(1); 20} and {D'(0);
20}, respectively. We define D@ [D'()] to be the total
number of customers which depart from the standard
{modificd} system in the interval (0,t]. Here we obtain
weak convergence limit theorems for these processes
when P21 as usual we assume Q'(0=Q@0)=0, but
‘Jjustification for other initial conditions is thcorem 4.1 of
[2]. We have, by the definition of departure Processcs,
DEA@-Q@1), and D'(=A(@)»Q'(). Now from the
definition of @'(1), we have

0<i£1.

D) = A(0)- {X(1) - inf
O<s<t

X1,
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=S(f)+ inf
O<s<t

We now define the random function Df, by

D= [D'(nt) - (0 A ntl/n ', 01,
and continuous mapping g: D{0,11xD{0,1}] —
D[0,1] by

[A(s) - $())-

g M=y + inf  [x(s) y(s)], 0<e<l.

Oss<t
The process D, is defined exactly like D' with D(nf)
replacmg D'(nt). Using lemma 3 we obtain the
following Iemma'
Lemma 4. IfP>1 then d(D ,D =0

(iv) The Queue length Process at the ith Service
Channel

Let Q'() be the number of customers in the
standard system at time t whxch will be processed
through the ith service channel and let {Q } be the
corresponding sequence of the random function in D
where g

N

Q=0 (ny yn!?, 0si<l.

Let the pfocess Li(t) be the work load at time t
which will be processed through the ith service channel.
Define the corresponding sequence of random function

{L.} in Dby ,
Li=L' (n)4 yn'?, 05151

Our goal is 10 show that Q° = (i, /w) f (€) when
P=1. To obtain this result, first'we state the following
lcmmas:

Lemma$, If P21, then
P(L!, L7) = 0,ij=1.2,....5. (cf. [4], lemma 5.1).

Lemma6.  If P=1, then P(u; QLu;' 0)) = 0,
ij=12,..s. ‘ ‘
Proof. The result follows if we use an argument

similar to that uscd in lemma 5.2 of [4], using theorem

" 1 instcad of Donsker's theorem (cf. [2], theorem 16.1)

and lemma 3.
Lemma 7.
j=L2,.

If P=1, then Pi;ip) Q,, Q1 =0
.. {cf. [4], lemma 5.3).

~ (v) The Load and Waiting Time Processes

In the previous part we introduced the load at the ith
service channel by L‘(t). It is obvious that the total
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L),
L'G)+ L% +..+ L*(). In a single server queue
Li(t) =L(s) is just the virtual waiting time, W(t), the
time a potential customer arriving at time t would have
to wait before reaching the server. Here

load for the entire system, is just

WE=min {L'Q).
1<i<s

In this part our aim is to obtain the functional central

limit theorems for L i(l), L(t) and W(t) where P=1 and
server are not identical.

The total load can be expressed as
s Bi() s
L=y Y v} + er(t),
=1 k=B’ (1))-[Q7 (1)-1}°+1 =l

where the v’,; are actual service times, B/(1) is the
total number of customers which arrive in ‘(0,1] and are

processed through the jth service channel, and finally
rl.(t) is the residual service time of the customer being

served by the jth server at time t.
Define the random functions
L, and W, in D[0,1] by
L =L(ntyyn'?, 0s<1,
W, = Wntylyn'?, 0<i<1.
Now, we state the functional central limit theorems
as follows:
Theorem 3. If P=1, then we have:

@ Q=& forall initial queue lengths,

® D, =g (0,0, andD, = g(at,0f,),
© QL= W/, i=12,..5,

@ L,= (/W) A&,

© Li=p'f®) adW, = pu (e,

the random function f(§) has the same distribution as

l¢l.
Proof. (a) We proceed as theorem 2.1 of [4] by using
lemma 2 instead of lemma 2.1 of [4].
(b) By applying the continuous mapping theorem
and lemma 4 with the fact that(aA, oS) = (af |, 0§,),

the result follows.
(c) This follows by lemmas 3 and 5, and theorem
4.1 of [2].
(d) Using lemma 3 and theorem 4.1 of [2] it
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suffices to show lhatd(Ln,—s-Qn) = 0. As it has been
7

shown in the proof of lemma 5.2 of (2], the maximal

residual service time can be omitted by the factor n 12 ,
so we can ignore it. Thus, we can write,

B'(nt)

Lny _ I +
N ENT 2 Z
n yn =L k=Bl [QKm)- 11" +1
(N - ) e L S0 (1) i
12 4 J
Yn =1 ‘
After dropping some terms of order n'?, using
triangle inequality we have,
d,(L,,,-s—Q,, <p|L.20,)<p|3u) 0l iQ,.‘)
u u | j=t L
1 c Bl i -1
+ sup i)

0<i<1 {yn'? D k=Bim{0im]"
F

The first term on the right is less than or equal to
s 1 u
245 |2,
)

L0
u
and this converges in probability to 0 by lemma 7. Thus
it will suffice to show that

; By .y
sup T by ) . (Vk'ﬂj ME
0<<1 | yn = k=B -[Qnr) 1]
d 1 B i
sup > i u; )P 0.

Fo0ss1 {ym™? k=Bl -[Qm)-1] "

This fact follows by an argument exaculy like that used

to prove lemma 5.2 of [4], and this leads to the result.
(e) (cf. [4], theorem 6.2).

Corollary 1. If P=1, then

im  p| 20 ol lem™” I‘eXp {-y2/2]dy, x20
. Ylm 0, ' x<0.
Theorem 4. If P>1, then we have:

@ Q,=¢&
) D,=>ofandD ,= Gt

Proof. (a) Using lemma 2 and theorem 4.1 of [2] it
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suffices to show that (X ,, Q;) = 0. The result follows
by applying part (b) of theorem 2 of [5].

(b) By part (a) we have dX ,, Q;) =0, it
follows thatd® ,,
Corollary 2. If P>, then

S ,) = 0. Thus we have the result.

lim pl2O-G-M
{300 yt1/2

It is clear that corollaries 1 and 2 also hold for Q(t).

=(/m [ oxp {-y*12) .
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